Tsubasa OCHIAI Shigeki MATSUDA Hideyuki WATANABE Xugang LU Chiori HORI Hisashi KAWAI Shigeru KATAGIRI
Among various training concepts for speaker adaptation, Speaker Adaptive Training (SAT) has been successfully applied to a standard Hidden Markov Model (HMM) speech recognizer, whose state is associated with Gaussian Mixture Models (GMMs). On the other hand, focusing on the high discriminative power of Deep Neural Networks (DNNs), a new type of speech recognizer structure, which combines DNNs and HMMs, has been vigorously investigated in the speaker adaptation research field. Along these two lines, it is natural to conceive of further improvement to a DNN-HMM recognizer by employing the training concept of SAT. In this paper, we propose a novel speaker adaptation scheme that applies SAT to a DNN-HMM recognizer. Our SAT scheme allocates a Speaker Dependent (SD) module to one of the intermediate layers of DNN, treats its remaining layers as a Speaker Independent (SI) module, and jointly trains the SD and SI modules while switching the SD module in a speaker-by-speaker manner. We implement the scheme using a DNN-HMM recognizer, whose DNN has seven layers, and elaborate its utility over TED Talks corpus data. Our experimental results show that in the supervised adaptation scenario, our Speaker-Adapted (SA) SAT-based recognizer reduces the word error rate of the baseline SI recognizer and the lowest word error rate of the SA SI recognizer by 8.4% and 0.7%, respectively, and by 6.4% and 0.6% in the unsupervised adaptation scenario. The error reductions gained by our SA-SAT-based recognizers proved to be significant by statistical testing. The results also show that our SAT-based adaptation outperforms, regardless of the SD module layer selection, its counterpart SI-based adaptation, and that the inner layers of DNN seem more suitable for SD module allocation than the outer layers.
Anhao XING Qingwei ZHAO Yonghong YAN
This paper proposes a new quantization framework on activation function of deep neural networks (DNN). We implement fixed-point DNN by quantizing the activations into powers-of-two integers. The costly multiplication operations in using DNN can be replaced with low-cost bit-shifts to massively save computations. Thus, applying DNN-based speech recognition on embedded systems becomes much easier. Experiments show that the proposed method leads to no performance degradation.
Shin Jae KANG Kang Hyun LEE Nam Soo KIM
In this letter, we propose a novel supervised pre-training technique for deep neural network (DNN)-hidden Markov model systems to achieve robust speech recognition in adverse environments. In the proposed approach, our aim is to initialize the DNN parameters such that they yield abstract features robust to acoustic environment variations. In order to achieve this, we first derive the abstract features from an early fine-tuned DNN model which is trained based on a clean speech database. By using the derived abstract features as the target values, the standard error back-propagation algorithm with the stochastic gradient descent method is performed to estimate the initial parameters of the DNN. The performance of the proposed algorithm was evaluated on Aurora-4 DB, and better results were observed compared to a number of conventional pre-training methods.